Interest Rates

• Rates and basis points
 – 100 basis points are equal to one percentage point
• Short-term riskless rate
 – Provides foundation for other rates
 – Approximated by rate on Treasury bills
 – Other rates differ because of
 • Maturity differentials
 • Security risk premiums

Determinants of Interest Rates

• Real rate of interest
 – Rate that must be offered to persuade individuals to save rather than consume
 – Rate at which real capital physically reproduces itself
• Nominal interest rate
 – Function of the real rate of interest and expected inflation premium

Interest Rates

• Maturity differentials
 – Term structure of interest rates
 • Accounts for the relationship between time and yield for bonds the same in every other respect
• Risk premium
 – Yield spread or yield differential
 – Associated with issuer’s particular situation

Determinants of Interest Rates

• Market interest rates on riskless debt = real rate + expected inflation
 – Fisher Hypothesis
• Real rate estimates obtained by subtracting the expected inflation rate from the observed nominal rate
• Real interest rate is an ex ante concept
Measuring Bond Yields

- **Yield to maturity**
 - Most commonly used
 - Promised compound rate of return received from a bond purchased at the current market price and held to maturity
 - Equates the present value of the expected future cash flows to the initial investment
 - Similar to internal rate of return

\[
P = \sum_{t=1}^{n} \frac{C_t/2}{(1 + YTM/2)^t} + \frac{MV}{(1 + YTM/2)^n}
\]

- For a zero coupon bond
 \[
 YTM = 2 \times \left(\frac{MV}{P} \right)^{1/n} - 1
 \]

Yield to Maturity

- Investors earn the YTM if the bond is held to maturity and all coupons are reinvested at YTM

Yield to Call

- Yield based on the deferred call period
- Substitute number of periods until first call date for and call price for face value

\[
P = \sum_{t=1}^{n} \frac{C_t/2}{(1 + YTC/2)^t} + \frac{CP}{(1 + YTC/2)^n}
\]

Realized Compound Yield

- Rate of return actually earned on a bond given the reinvestment of the coupons at varying rates

\[
RCY = \left(\frac{\text{Total future dollars}}{\text{Purchase price of bond}} \right)^{1/n} - 1.0
\]

- Horizon return analysis
 - Bond returns based on assumptions about reinvestment rates

Bond Valuation Principle

- **Intrinsic value**
 - An estimated value
 - Present value of the expected cash flows
 - Required to compute intrinsic value
 - Expected cash flows
 - Timing of expected cash flows
 - Discount rate, or required rate of return by investors

Bond Valuation

- Value of a coupon bond:

\[
V = \sum_{t=1}^{n} \frac{C_t/2}{(1 + r/2)^t} + \frac{MV}{(1 + r/2)^n}
\]

- Biggest problem is determining the discount rate or required yield
- Required yield is the current market rate earned on comparable bonds with same maturity and credit risk
Bond Price Changes

- Over time, bond prices that differ from face value must change
- Bond prices move inversely to market yields
- The change in bond prices due to a yield change is directly related to time to maturity and indirectly related to coupon rate

Measuring Bond Price Volatility: Duration

- Important considerations
 - Different effects of yield changes on the prices and rates of return for different bonds
 - Maturity inadequate measure of volatility
 - May not have identical economic lifetime
 - A measure is needed that accounts for both size and timing of cash flows

Calculating Duration

- Need to time-weight present value of cash flows from bond
 \[D = \frac{\sum_{t=1}^{n} \frac{PV(CF_t)}{Market \ Price} \times t}{Market \ Price} \]
- Duration depends on three factors
 - Maturity of the bond
 - Coupon payments
 - Yield to maturity

Duration Relationships

- Duration increases with time to maturity but at a decreasing rate
 - For coupon paying bonds, duration is always less than maturity
 - For zero coupon-bonds, duration equals time to maturity
- Duration increases with lower coupons
- Duration increases with lower yield to maturity
Why is Duration Important?

- Allows comparison of effective lives of bonds that differ in maturity, coupon
- Used in bond management strategies particularly immunization
- Measures bond price sensitivity to interest rate movements, which is very important in any bond analysis

Estimating Price Changes Using Duration

- Modified duration = $D^* = D / (1 + r)$
- D^* can be used to calculate the bond’s percentage price change for a given change in interest rates

\[
\% \Delta \text{in bondprice} = \frac{-D}{(1 + r)} \times \Delta r
\]

Convexity

- Refers to the degree to which duration changes as the yield to maturity changes
 - Price-yield relationship is convex
- Duration equation assumes a linear relationship between price and yield
- Convexity largest for low coupon, long-maturity bonds, and low yield to maturity

Duration Conclusions

- To obtain maximum price volatility, investors should choose bonds with the longest duration
- Duration is additive
 - Portfolio duration is just a weighted average
- Duration measures volatility which isn’t the only aspect of risk in bonds

Bonds: Analysis and Strategy

Copyright © 2002 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful. Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by use of these programs or from the use of the information contained herein.

Chapter 9
Prepared by
G. D. Koppenhaver, Iowa State University
Why Buy Bonds?

- Attractive to investors seeking steady income and aggressive investors seeking capital gains
- Promised yield to maturity is known at the time of purchase
- Can eliminate risk that a rise in rates decreases bond price by holding to maturity

The Case Against Buying Bonds

- Don't hold bonds unless investing strictly for income
 - Capital appreciation negative 1926-96
- Alternative: a combination of cash investments and stocks
- Investors should consider whether they could build better portfolios that do not include bonds

Rates of Return on Bonds and Bills

<table>
<thead>
<tr>
<th>Series</th>
<th>Geometric Mean (%)</th>
<th>Arithmetic Mean (%)</th>
<th>Standard Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term corporate bonds</td>
<td>5.6</td>
<td>5.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Long-term government bonds</td>
<td>5.0</td>
<td>5.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Intermediate government bonds</td>
<td>5.3</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>U.S. Treasury bills</td>
<td>3.7</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Inflation</td>
<td>3.1</td>
<td>3.2</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Buying Foreign Bonds

- Why?
 - Foreign bonds may offer higher returns at a point in time than alternative domestic bonds
 - Diversification
- Can be costly and time-consuming
 - Illiquid markets
 - Transaction costs and exchange rate risk

Understanding the Bond Market

- Benefits from a weak economy
 - Interest rates decline and bond prices increase
- Important relationship is between bond yields and inflation rates
 - Investors react to expectations of future inflation rather than current actual inflation

The Term Structure of Interest Rates

- Term structure of interest rates
 - Relationship between time to maturity and yields
- Yield curves
 - Graphical depiction of the relationship between yields and time for bonds that are identical except for maturity
 - Default risk held constant
Term Structure of Interest Rates

- Upward-sloping yield curve
 - typical, interest rates rise with maturity
- Downward-sloping yield curves
 - Unusual, predictor of recession?
- Term structure theories
 - Explanations of the shape of the yield curve and why it changes shape over time

Pure Expectations Theory

- Long-term rates are an average of current short-term rates and those expected to prevail over the long-term period
 - Average is geometric rather than arithmetic
- If expectations otherwise, the shape of the yield curve will change

Liquidity Preference Theory

- Rates reflect current and expected short rates, plus liquidity risk premiums
- Liquidity premium to induce long term lending
 - Implies long-term bonds should offer higher yields
- Interest rate expectations are uncertain

Preferred Habitat Theory

- Investors have preferred maturities
 - Borrowers and lenders can be induced to shift maturities with appropriate risk premium compensation
 - Shape of yield curve reflects relative supplies of securities in each sector
- Most market observers are not firm believers in any one theory

Risk Structure of Rates

- Yield spreads
 - Relationship between yields and the particular features on various bonds
- Yield spreads are a result of
 - Differences in: quality, coupon rates, callability, marketability, tax treatments, issuing country

Passive Bond Strategies

- Investors do not actively seek out trading possibilities in an attempt to outperform the market
 - Bond prices fairly determined
 - Risk is the portfolio variable to control
- Investors do assess default and call risk
 - Diversify bond holdings to match preferences
Passive Bond Strategies

- **Buy and hold**
 - Choose most promising bonds that meet the investor's requirements
 - No attempt to trade in search of higher returns
- **Indexing**
 - Attempt to match performance of a well-known bond index
 - Indexed bond mutual funds

Immunization

- **Used to protect a bond portfolio against interest rate risk**
 - Price risk and reinvestment risk cancel
- **Price risk results from relationship between bond prices and rates**
- **Reinvestment risk results from uncertainty about the reinvestment rate for future coupon income**

Immunization

- **Risk components move in opposite directions**
 - Favorable results on one side can be used to offset unfavorable results on the other
- **Portfolio immunized if the duration of the portfolio is equal to investment horizon**
 - Like owning zero-coupon bond

Active Bond Strategies

- **Requires a forecast of changes in interest rates**
 - Lengthen (shorten) maturity of bond portfolio when interest rates are expected to decline (rise)
- **Horizon analysis**
 - Projection of bond performance over investment horizon given reinvestment rates and future yield assumptions

Active Bond Strategies

- **Identify mispricing among bonds then swap**
 - Substitution swap, yield pickup swap, rate anticipation swap, sector swap
- **Interest rate swaps**
 - Exchange a series of cash flows
 - Convert from fixed- to floating-rate
 - Primarily used to hedge interest rate risk

Building a Fixed-Income Portfolio

- **If conservative investor**
 - View bonds as fixed-income securities that will pay them a steady stream of income with little risk
 - Buy and hold Treasury securities
- **Conservative investor should consider:**
 - Maturity, reinvestment risk, rate expectations, differences in coupons, indirect investing
Building a Fixed Income Portfolio

- **If aggressive investor**
 - View bonds as source of capital gains arising from changes in interest rates
 - Treasury bonds can be bought on margin to further magnify gains (or losses)
 - Seek the highest total return

- **International bonds**
 - Direct or indirect investment